magnet.aggmodels.gnn.ReinforceLearnGNN#

class magnet.aggmodels.gnn.ReinforceLearnGNN(*args, **kwargs)#

Bases: GeometricGNN

Reinforcement Learning GNN for graph partitioning.

Constructor

__init__(*args, **kwargs) None#

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Methods

A2C_train(training_dataset[, batch_size, ...])

change_vert(graph, action)

In place change of vertex to other subgraph.

compute_episode_length(graph)

reward_function(new_state, old_state, action)

update_state(graph, action)

A2C_train(training_dataset: MeshDataset, batch_size: int = 1, epochs: int = 1, gamma: float = 0.9, alpha: float = 0.1, optimizer=None, **kwargs)#
change_vert(graph: Data, action: int)#

In place change of vertex to other subgraph.

abstract compute_episode_length(graph: Data) int#
abstract reward_function(new_state: Data, old_state: Data, action: int) Tensor#
abstract update_state(graph: Data, action: int) Data#

Inherited Methods

__init__(*args, **kwargs)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

agglomerate(mesh[, mode, nref, mult_factor])

Agglomerate a mesh.

agglomerate_dataset(dataset, **kwargs)

Agglomerate all meshes in a dataset.

bisect(mesh)

Bisect the mesh once.

bisection_Nref(mesh, Nref[, warm_start])

Bisect the mesh recursively a set number of times.

bisection_mult_factor(mesh, mult_factor[, ...])

Bisect a mesh until the agglomerated elements are small enough.

bisection_segregated(mesh, mult_factor[, subset])

Bisect heterogeneous mesh until elements are small enough.

coarsen(mesh, subset[, mode, nref, mult_factor])

Coarsen a subregion of the mesh.

get_number_of_parameters()

Get total number of parameters of the GNN.

get_sample(mesh[, randomRotate, selfloop, ...])

create a graph data structure sample from a mesh.

load_model(model_path)

Load model from state dictionary.

loss_function(output, graph)

Loss function used during training.

multilevel_bisection(mesh[, refiner, ...])

normalize(x)

Normalize the data before feeding it to the GNN.

save_model(output_path)

Save current model to state dictionary.

train_GNN(training_dataset, ...[, ...])

Train the Graph Neural Network.