magnet.aggmodels.rlpartitioner.DRLCoarsePartioner#
- class magnet.aggmodels.rlpartitioner.DRLCoarsePartioner(*args, **kwargs)#
Bases:
ReinforceLearnGNN
Constructor
- __init__(*args, **kwargs) None #
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
ac_eval
(graph[, perc])compute_episode_length
(graph)cut
(graph)get_sample
(mesh, **kwargs)create a graph data structure sample from a mesh.
multi_eval
(graph[, step, perc])reward_function
(new_state, old_state, ...)update_state
(graph, action)volumes
(graph)- ac_eval(graph: Data, perc: float = 0.01)#
- compute_episode_length(graph: Data) int #
- cut(graph)#
- get_sample(mesh: Mesh, **kwargs)#
create a graph data structure sample from a mesh.
This is used for both training and running the GNN.
- Parameters:
mesh (Mesh) – Mesh to be sampled.
randomRotate (bool, optional) – If True, randomly rotate the mesh (default is False).
selfloop (bool, optional) – If True, add 1 on the diagonal of the adjacency matrix, i.e self-loops on the graph (default is False).
- Returns:
Graph data representing the mesh.
- Return type:
Data
Notes
The two tensors x and edge_index are both on DEVICE (cuda, if available).
- multi_eval(graph, step: int = 1, perc: float = 0.01)#
- reward_function(new_state: Data, old_state: Data, action: int, **kwargs)#
- update_state(graph: Data, action: int) Data #
- volumes(graph)#
Inherited Methods
A2C_train
(training_dataset[, batch_size, ...])__init__
(*args, **kwargs)Initialize internal Module state, shared by both nn.Module and ScriptModule.
agglomerate
(mesh[, mode, nref, mult_factor])Agglomerate a mesh.
agglomerate_dataset
(dataset, **kwargs)Agglomerate all meshes in a dataset.
bisect
(mesh)Bisect the mesh once.
bisection_Nref
(mesh, Nref[, warm_start])Bisect the mesh recursively a set number of times.
bisection_mult_factor
(mesh, mult_factor[, ...])Bisect a mesh until the agglomerated elements are small enough.
bisection_segregated
(mesh, mult_factor[, subset])Bisect heterogeneous mesh until elements are small enough.
change_vert
(graph, action)In place change of vertex to other subgraph.
coarsen
(mesh, subset[, mode, nref, mult_factor])Coarsen a subregion of the mesh.
get_number_of_parameters
()Get total number of parameters of the GNN.
load_model
(model_path)Load model from state dictionary.
loss_function
(output, graph)Loss function used during training.
multilevel_bisection
(mesh[, refiner, ...])normalize
(x)Normalize the data before feeding it to the GNN.
save_model
(output_path)Save current model to state dictionary.
train_GNN
(training_dataset, ...[, ...])Train the Graph Neural Network.